互联网马克斯Compute重装到场比赛,ODPS重装上沙场

2019-09-20 22:37 来源:未知

原标题:MaxCompute重装上阵 第五弹 - SELECT TRANSFOR

互联网 1

Hive Python Streaming的原理及写法

http://www.tuicool.com/articles/vmumUjA

上面的语句造出一份有50行的数据表,值是从1到50; 测试时候的数据就可以方便造出来了。功能看似简单,但以前是odps的一个痛点,没有方便的办法造数据,就不方便测试以及初学者的学习和探索。当然这也可以通过udtf来实现,但是需要复杂的流程:进入ide->写udtf->打包->add jar/python->create function->执行->drop function->drop resource。

在一个完整的查询语句中,例如

Hive中的TRANSFORM:自定义Mapper和Reducer完成Map/Reduce

/**
 * Mapper.
 */
public interface Mapper {
  /**
   * Maps a single row into an intermediate rows.
   * 
   * @param record
   *          input record
   * @param output
   *          collect mapped rows.
   * @throws Exception
   *           on error
   */
  void map(String[] record, Output output) throws Exception;
}

可以将一列拆分为多列

使用样例:

public class ExecuteMap {

    private static final String FULL_PATH_CLASS = "com.***.dpop.ods.mr.impl.";

    private static final Map<String, Mapper> mappers = new HashMap<String, Mapper>();

    public static void main(String[] args) throws Exception {
        if (args.length < 1) {
            throw new Exception("Process class must be given");
        }

        new GenericMR().map(System.in, System.out,
                getMapper(args[0], Arrays.copyOfRange(args, 1, args.length)));
    }

    private static Mapper getMapper(String parserClass, String[] args)
            throws ClassNotFoundException {
        if (mappers.containsKey(parserClass)) {
            return mappers.get(parserClass);
        }

        Class[] classes = new Class[args.length];
        for (int i = 0; i < classes.length;   i) {
            classes[i] = String.class;
        }
        try {
            Mapper mapper = (Mapper) Class.forName(FULL_PATH_CLASS   parserClass).getConstructor(classes).newInstance(args);
            mappers.put(parserClass, mapper);
            return mapper;
        } catch (ClassNotFoundException e) {
            throw new ClassNotFoundException("Unknown MapperClass:"   parserClass, e);
        } catch (Exception e) {
            throw new  ClassNotFoundException("Error Constructing processor", e);
        }

    }
}

MR_USING=" USING 'java -Xmx512m -Xms512m -cp ods-mr-1.0.jar:hive-contrib-2.3.33.jar com.***.dpop.ods.mr.api.ExecuteMap "

COMMAND="FROM dw_rtb.event_fact_adx_auction "
COMMAND="${COMMAND} INSERT overwrite TABLE dw_rtb.event_fact_mid_adx_auction_ad PARTITION(yymmdd=${CURRENT_DATE}) SELECT transform(search_id, print_time, pthread_id, ad_s) ${MR_USING} EventFactMidAdxAuctionAdMapper' as search_id, print_time, pthread_id, ad_s, ssp_id WHERE $INSERT_PARTITION and original = 'exinternal' "

互联网 2

例如:

UDAF

  • Hive udaf开发入门和运行过程详解
  • Hive通用型自定义聚合函数(UDAF)
  1. 可以串联着用,使用 distribute by和 sort by对输入数据做预处理

IN SUBQUERY与LEFT SEMI JOIN类似。

Hive中的TRANSFORM:使用脚本完成Map/Reduce

转自: http://www.coder4.com/archives/4052

首先来看一下数据:

hive> select * from test;
OK
1       3
2       2
3       1

假设,我们要输出每一列的md5值。在目前的hive中是没有这个udf的。

我们看一下Python的代码:

#!/home/tops/bin/python

import sys
import hashlib

for line in sys.stdin:
    line = line.strip()
    arr = line.split()
    md5_arr = []
    for a in arr:
        md5_arr.append(hashlib.md5(a).hexdigest())
    print "t".join(md5_arr)

在Hive中,使用脚本,首先要将他们加入:

add file /xxxx/test.py

然后,在调用时,使用TRANSFORM语法。

SELECT 
    TRANSFORM (col1, col2) 
    USING './test.py' 
    AS (new1, new2) 
FORM 
    test;

这里,我们使用了AS,指定输出的若干个列,分别对应到哪个列名。如果省略这句,则Hive会将第1个tab前的结果作为key,后面其余作为value。

这里有一个小坑:有时候,我们结合INSERT OVERWRITE使用上述TRANSFORM,而目标表,其分割副可能不是t。但是请牢记:TRANSFORM的分割符号,传入、传出脚本的,永远是t。不要考虑外面其他的分割符号!

最后,解释一下MAP、REDUCE。

在有的Hive语句中,大家可能会看到SELECT MAP (…) USING ‘xx.py’这样的语法。

然而,在Hive中,MAP、REDUCE只不过是TRANSFORM的别名,Hive不保证一定会在map/reduce中调用脚本。看看官方文档是怎么说的:

Formally, MAP ... and REDUCE ... are syntactic transformations of SELECT TRANSFORM ( ... ). In other words, they serve as comments or notes to the reader of the query. BEWARE: Use of these keywords may be dangerous as (e.g.) typing "REDUCE" does not force a reduce phase to occur and typing "MAP" does not force a new map phase!

所以、混用map reduce语法关键字,甚至会引起混淆,所以建议大家还是都用TRANSFORM吧。

友情提示:如果脚本不是Python,而是awk、sed等系统内置命令,可以直接使用,而不用add file。

如果表中有MAP,ARRAY等复杂类型,怎么用TRANSFORM生成?

例如:

CREATE TABLE features
(
    id BIGINT,
    norm_features MAP<STRING, FLOAT> 
);

答案是,要在脚本的输出中,对特殊字段按照HDFS文件中的格式输出即可。

例如,以上面的表结构为例,每行输出应为:

1^Ifeature1^C1.0^Bfeature2^C2.0

其中I是tab键,这是TRANSFORM要求的分割符号。B和^C是Hive存储时MAP类型的KV分割符。

另外,在Hive的TRANSFORM语句的时候,要注意AS中加上类型声明:

SELECT TRANSFORM(stuff)
USING 'script'
AS (thing1 INT, thing2 MAP<STRING, FLOAT>)

或者使用python

其中的VALUES (...), (...) t (a, b), 相当于定义了一个名为t,列为a, b的表,类型为(a string, b string),其中的类型从VALUES列表中推导。这样在不准备任何物理表的时候,可以模拟一个有任意数据的,多行的表,并进行任意运算。

UDTF

  • Hive中UDTF编写和使用

互联网 3

上次向您介绍了复杂类型,从本篇开始,向您介绍MaxCompute在SQL语言DML方面的改进

理论上select transform能实现的功能udtf都能实现,但是select transform比udtf要灵活得多。且select transform不仅支持java和python,还支持shell,perl等其它脚本和工具。 且编写的过程要简单,特别适合adhoc功能的实现。举几个例子:

互联网 4

此文中采用MaxCompute Studio作展示,首先,安装MaxCompute Studio,导入测试MaxCompute项目,创建工程,建立一个新的MaxCompute脚本文件, 如下

setodps.sql.type.system.odps2=true;SELECTexplode(array(1,3))AS(a)UNIONALLSELECTexplode(array(0,2,4))AS(a)ORDERBYaLIMIT3;

  • SELECT TRANSFORM。

  • 场景1

  • 我的系统要迁移到MaxCompute平台上,系统中原来有很多功能是使用脚本来完成的,包括python,shell,ruby等脚本。 要迁移到MaxCompute上,我需要把这些脚本全部都改造成UDF/UDAF/UDTF。改造过程不仅需要耗费时间人力,还需要做一遍又一遍的测试,从而保证改造成的udf和原来的脚本在逻辑上是等价的。我希望能有更简单的迁移方式。
  • 场景2
  • SQL比较擅长的是集合操作,而我需要做的事情要对一条数据做更多的精细的计算,现有的内置函数不能方便的实现我想要的功能,而UDF的框架不够灵活,并且Java/Python我都不太熟悉。相比之下我更擅长写脚本。我就希望能够写一个脚本,数据全都输入到我的脚本里来,我自己来做各种计算,然后把结果输出。而MaxCompute平台就负责帮我把数据做好切分,让我的脚本能够分布式执行,负责数据的输入表和输出表的管理,负责JOIN,UNION等关系操作就好了。

LEFT ANTI JOIN

  1. 用odps跑测试

除此之外,针对MaxCompute用户的特点,也就是需要在非常复杂的业务场景下,支持对己大量数据的处理,MaxCompute提供了特有的脚本模式和参数化视图,将在下一次为您介绍。

性能

迁移一个原来在Oracle上面的ETL系统,发现用了 WHERE EXISTS( SELECT ...) 和 WHERE IN (SELECT ...) 这类的语句,可是发现ODPS在这方面支持不完整,还要手工将这些半连接的语句转换为普通JOIN,再过滤。。。

  1. 无中生有造数据

等效于

  1. Using 子句指定的是要执行的命令,而非资源列表,这一点和大多数的MaxCompute SQL语法不一样,这么做是为了和hive的语法保持兼容。

  2. 输入从stdin传入,输出从stdout传出;

  3. 可以配置分隔符,默认使用 t 分隔列,用换行分隔行;

  4. 可以自定义reader/writer,但用内置的reader/writer会快很多

  5. 使用自定义的资源(脚本文件,数据文件等),可以使用 set odps.sql.session.resources=foo.sh,bar.txt; 来指定。可以指定多个resource文件,用逗号隔开(因此不允许resource名字中包含逗号和分号)。此外我们还提供了resources子句,可以在using 子句后面指定 resources 'foo.sh', 'bar.txt' 来指定资源,两种方式是等价的(参考“用odps跑测试”的例子);

执行后,MaxCompute Project Explorer中找到目标表,并看到values中的数据已经插入,如下:

或者用map,reduce的关键字会让逻辑显得清楚一些

INSERT... VALUES... 有一个限制,values必须是常量,但是有的时候希望在插入的数据中进行一些简单的运算,这个时候可以使用MaxCompute的VALUES TABLE功能,如下:

小结

MaxCompute支持SQL标准的CTE。能够提高SQL语句的可读性与执行效率。

第三弹 - 复杂类型

a

6. 资源文件会被下载到执行指定命令的工作目录,可以使用文件接口打开./bar.txt文件。

标注

MaxCompute基于ODPS2.0的SQL引擎,提供了SELECT TRANSFORM功能,可以明显简化对脚本代码的引用,与此同时,也提高了性能!我们推荐您尽量使用SELECT TRANSFORM。

SELECT*FROMsrc1UNIONSELECT*FROMsrc2;

MaxCompute基于ODPS2.0新一代的SQL引擎,显著提升了SQL语言编译过程的易用性与语言的表达能力。我们在此推出MaxCompute(ODPS2.0)重装上阵系列文章

可以看到,顶层的union两侧各为一个join,join的左表是相同的查询。通过写子查询的方式,只能重复这段代码。

  1. 子进程和父进程是两个进程,而UDTF是单线程的,如果计算占比比较高,数据吞吐量比较小,可以利用服务器的多核特性
  2. 数据的传输通过更底层的系统调用来读写,效率比java高
  3. SELECT TRANSFORM支持的某些工具,如awk,是natvie代码实现的,和java相比理论上可能会有性能优势。

可以看到对src读后进行过滤的DAG。对src的读取与过滤在整个执行计划中只需要一次 ( 注1 )。

第四弹 - CTE,VALUES,SEMIJOIN

只会返回mytable1中的数据,只要mytable1的id在mytable2的id中出现过

上次向您介绍了CTE,VALUES,SEMIJOIN,本篇向您介绍MaxCompute对其他脚本语言的支持

正在开发新项目,需要给一个小数据表准备些基本数据,但是没有INSERT ... VALUES 语句,没办法把数据和创建表的DDL放在一起维护,只好另用一些脚本,调用ODPS命令行准备数据。。。

  1. 支持其他脚本语言

SELECT*frommytable1 aLEFTANTIJOINmytable2 bona.id=b.id;

互联网 5

UNION后LIMIT的语义变化。

  • 注一,USING 后面的字符串,在后台是直接起的子进程来调起命令,没有起shell,所以shell的某些语法,如输入输出重定向,管道等是不支持的。如果用户需要可以以 shell 作为命令,真正的命令作为数据输入,参考“无中生有造数据”的例子;
  • 注二,JAVA 和 PYTHON 的实际路径,可以从JAVA_HOME 和 PYTHON_HOME 环境变量中得到作业;

例如:

互联网 6

SELECT*frommytable1whereidnotin(selectidfrommytable2);

互联网 7

原有ODPS也支持IN SUBQUERY,但是不支持correlated条件,MaxCompute支持

上述功能可以使用SELECT TRANSFORM来实现

0

Select transform允许sql用户指定在服务器上执行一句shell命令,将上游数据各字段用tab分隔,每条记录一行,逐行输入shell命令的stdin,并从stdout读取数据作为输出,送到下游。Shell命令的本质是调用Unix的一些utility,因此可以启动其他的脚本解释器。包括python,java,php,awk,ruby等。

可以看到,a对应的子查询只需要写一次,在后面重用,CTE的WITH字句中可以指定多个子查询,像使用变量一样在整个语句中反复重用。除了重用外,也不必再反复嵌套了。

互联网 8

另外在处理分区表的时候,也会有特殊处理

责任编辑:

MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台, 尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。 MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

上面的语句仅仅是把value原样输出,但是熟悉awk的用户,从此过上了写awk脚本不写sql的日子

则等效于

SELECT TRANSFORM 介绍

例如:

性能上,SELECT TRANSFORM 与UDTF 各有千秋。经过多种场景对比测试,数据量较小时,大多数场景下select transform有优势,而数据量大时UDTF有优势。由于transform的开发更加简便,所以select transform非常适合做adhoc的数据分析。

互联网 9

  1. UDTF是有类型,而Transform的子进程基于stdin/stdout传输数据,所有数据都当做string处理,因此transform多了一步类型转换;
  2. Transform数据传输依赖于操作系统的管道,而目前管道的buffer仅有4KB,且不能设置, transform读/写 空/满 的pipe会导致进程被挂起;
  3. UDTF的常量参数可以不用传输,而Transform没办法利用这个优化。

SELECT*frommytable1 aLEFTANTIJOINmytable2 bona.id=b.id;

MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台, 尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。 MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

只会返回mytable1中的数据,只要mytable1的id在mytable2的id没有出现过

UDTF的优势:

返回

上面用的是perl。这其实不仅仅是语言支持的扩展,一些简单的功能,awk, python, perl, shell 都支持直接在命令里面写脚本,不需要写脚本文件,上传资源等过程,开发过程更简单。另外,由于目前我们计算集群上没有php和ruby,所以这两种脚本不支持。

SELECTkey,max(value)FROMsrc tWHEREvalue>0GROUPBYkeyHAVINGsum(value) >100ORDERBYkeyLIMIT100;

互联网 10

执行后在,MaxCompute Project Explorer中可以找到新创建的表,并看到values中的数据已经插入到表中,如下:

作者:隐林

小节

理论上OpenMR的模型都可以映射到上面的计算过程。注意,使用map,reduce,select transform这几个语法其实语义是一样的,用哪个关键字,哪种写法,不影响直接过程和结果。

SELECTDISTINCT*FROM(SELECT*FROMsrc1UNIONALLSELECT*FROMsrc2) t;

应用场景举例

场景1 

SELECT TRANSFORM 的优势:

2

select transform (key, value) using "perl -e 'while($input = <STDIN>){print $input;}'" from src;

互联网 11

本文为云栖社区原创内容,未经允许不得转载。返回搜狐,查看更多

大部分DBMS系统中,如MySQL,Hive等,UNION后如果有CLUSTER BY, DISTRIBUTE BY, SORT BY, ORDER BY或者LIMIT子句,其作用于与前面所有UNION的结果,而不是UNION的最后一路。ODPS2.0在set odps.sql.type.system.odps2=true;的时候,也采用此行为。例如:

互联网 12

第三弹 - 复杂类型

或者

第一弹 - 善用MaxCompute编译器的错误和警告

提交作业可以看到执行计划(全部展开后的视图):

有的时候表的列很多,准备数据的时候希望只插入部分列的数据,此时可以用插入列表功能

该命令兼容Hive的Transform功能,可以参考Hive的文档。一些需要注意的点如下:

是否合并或者分裂子查询,是由ODPS2.0的基于代价的优化器 (CBO)做出决定的,SQL本身的书写方式,不管是CTE还是子查询,并不能确保物理执行计划的合并或者分裂。

第一弹 - 善用MaxCompute编译器的错误和警告

第四弹 - CTE,VALUES,SEMIJOIN

第二弹 - 新的基本数据类型与内建函数

SELECT*fromsales_detailwheredsin(selectdtfromsales_date);

互联网 13

对于NOT IN SUBQUERY,类似于LEFT ANTI JOIN,但是有一点显著不同

目前odps select transform完全兼容了hive的语法、功能和行为,包括 input/output row format 以及 reader/writer。Hive上的脚本,大部分可以直接拿来运行,部分脚本只需要经过少许改动即可运行。另外我们很多功能都用比hive更高执行效率的语言 (C ) 重构,用以优化性能。

例如:

标注

SELECT*FROMtable1JOINtable2ONtable1.id = table2.id;

摘要: MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台, 尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。 MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

想测试一个新写的UDF,只写SELECT myudf('123');会报错,还必须创建一个dual表,里面加一行数据,好麻烦。如果测试UDAF,还要在测试表里面准备多行数据,每次测试不同的输入都要修改表内容或者创建新表,如果有个办法不用创建表也能不同的数据组合测试我的UDF就好了。。。

这个例子是为了说明,很多java的utility可以直接拿来运行。java和python虽然有现成的udtf框架,但是用select transform编写更简单,并且不需要额外依赖,也没有格式要求,甚至可以实现离线脚本拿来直接就用。

注1

  1. awk 用户会很喜欢这个功能

SELECT*frommytable1wherenotexists(select*frommytable2whereid= mytable1.id);`

编译此脚本,可以观察执行计划如下

其中子查询中的where value = mytable1.value就是一个correlated条件,原有ODPS对于这种既引用了子查询中源表,由引用了外层查询源表的表达式时,会报告错误。MaxCompute支持这种用法,这样的过滤条件事实上构成了SEMI JOIN中的ON条件的一部分。

SELECT*FROMtable1, table2WHEREtable1.id = table2.id;

如果mytable2中的所有id都不为NULL,则等效于

支持顶层UNION

_需要写一个复现的SQL, 从多个表中读取数据,有些之间做Join,有些之间做Union,生成中间数据又要Join, 最后需要输出多张表,最后写成了n层嵌套的子查询,自己都看不懂了。而且同样的查询,在不同的子查询中有重复。为了维护方便,把复杂的语句拆成多个语句,但是发现每个语句都需要单独提交,排队,并且要将中间结果写到本来不需要的临时表,在后面的语句中再读出来,慢了好多。。。

SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

因为WHERE中包含了OR,导致无法转换为SEMI JOIN,会单独启动作业执行子查询

返回左表中的数据,当join条件不成立,也就是mytable1中某行的id在mytable2的所有id中没有出现过,此行就保留在结果集中

使用CTE的方式重写以上语句

MaxCompute大大扩充了DML语句的支持,在易用性,兼容性和性能方面,可以更好的满足您的需求。对于SQL比较熟悉的专家会发现,上述功能大部分是标准的SQL支持的功能。MaxCompute会持续提升与标准SQL和业界常用产品的兼容性。

互联网 14

IN SUBQUERY/NOT IN SUBQUERY

创建一个新的文件,如下:

需要先写好FROM,再回头写SELECT列表,才能提示。如下

SELECT*frommytable1 aLEFTSEMIJOINmytable2 bona.id=b.id;

如果使用上述以FROM起始的方式书写,则可以自然而然的根据上下文进行提示。如下

实际上的逻辑执行顺序是 FROM->WHERE->GROUY BY->HAVING->SELECT->ORDER BY->LIMIT,前一个是后一个的输入,与标准的书写语序实际并不相同。很多容易混淆的问题,都是由此引起的。例如order by中只能引用select列表中生成的列,而不是访问FROM的源表中的列。HAVING可以访问的是 group by key和聚合函数。SELECT的时候,如果有GROUP BY,就只能访问group key和聚合函数,而不是FROM中源表中的列。

互联网 15

场景3

互联网 16

例如:

返回左表中的数据,当join条件成立,也就是mytable1中某行的id在mytable2的所有id中出现过,此行就保留在结果集中

MaxCompute支持SEMI JOIN(半连接)。SEMI JOIN中,右表只用来过滤左表的数据而不出现在结果集中。支持的语法包括LEFT SEMI JOIN,LEFT ANTI JOIN,(NOT) IN SUBQUERY,(NOT) EXISTS

等效于

但是,如果mytable2中有任何为NULL的列,则 not in表达式会为NULL,导致where条件不成立,无数据返回,此时与LEFT ANTI JOIN不同。

对于在values中没有制定的列,可以看到取缺省值为NULL。插入列表功能不一定和VALUES一起用,对于INSERT INTO ... SELECT..., 同样可以使用。

原有ODPS也支持[NOT] IN SUBQUERY不作为JOIN条件,例如出现在非WHERE语句中,或者虽然在WHERE语句中,但无法转换为JOIN条件。MaxCompute仍然支持这种用法,但是此时因为无法转换为SEMI JOIN而必须实现启动一个单独的作业来运行SUBQUERY,所以不支持correlated条件。

场景4

Common Table Expression (CTE)

场景2

1

MaxCompute基于ODPS2.0新一代的SQL引擎,显著提升了SQL语言编译过程的易用性与语言的表达能力。我们在此推出MaxCompute(ODPS2.0)重装上阵系列文章

互联网 17

执行的效果相当于

支持IMPLICIT JOIN

selectabs(-1),length('abc'),getdate();

MaxCompute支持UNION [DISTINCT] - 其中DISTINCT为忽略

SELECT*frommytable1whereidin(selectidfrommytable2);

其他改进

其中M1, M2, M4三个分布式任务分别对应对应三个输入表,双击M2可以看到中具体执行的DAG(在DAG中再次双击可以返回),如下

实际上,VALUES表并不限于在INSERT语句中使用,任何DML语句都可以使用。

VALUES

此功能主要是方便从其他数据库系统迁移,对于信贷买,我们还是推荐您使用JOIN,明确表示意图

SELECT*frommytable1 aLEFTANTIJOINmytable2 bona.id=b.id;

此文中采用MaxCompute Studio作展示,首先,安装MaxCompute Studio,导入测试MaxCompute项目,创建工程,建立一个新的MaxCompute脚本文件, 如下

SELECT*frommytable1 aLEFTSEMIJOINmytable2 bona.id=b.id;

MaxCompute支持以执行顺序书写查询语句,例如上面的语句可以写为

LEFT SEMI JOIN

ODPS1.0不支持顶层UNION。ODPS2.0可以支持,例如

SELECT*frommytable1whereidin(selectidfrommytable2wherevalue= mytable1.value);

摘要: MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台, 尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。 MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

互联网 18

SELECT*FROMsrcUNIONALLSELECT*FROMsrc;

例如:

第二弹 - 新的基本数据类型与内建函数

也就是可以不写from语句,直接执行SELECT,只要SELECT的表达式列表不用任何上游表数据就可以。其底层实现为从一个1行,0列的匿名VALUES表选取。这样,在希望测试一些函数,比如自己的UDF等,就再也不用手工创建DUAL表了。

EXISTS SUBQUERY/NOT EXISTS SUBQUERY

还有一种VALUES表的特殊形式

MaxCompute采用基于ODPS2.0的SQL引擎,对DML进行了大幅扩充,提高了易用性和兼容性,基本解决了上述问题。

SEMI JOIN

SELECT*frommytable1whereexists(select*frommytable2whereid= mytable1.id);`

FROMsrc tWHEREvalue >0GROUPBYkeyHAVING sum(value) >100SELECTkey, max(value)ORDERBYkeyLIMIT100;

SELECT*frommytable1whereidin(selectidfrommytable2)ORvalue>0;

当SUBQUERY中有至少一行数据时候,返回TRUE,否则FALSE。NOT EXISTS的时候则相反。目前只支持含有correlated WHERE条件的子查询。EXISTS SUBQUERY/NOT EXISTS SUBQUERY实现的方式是转换为LEFT SEMI JOIN或者LEFT ANTI JOIN

其中的ds如果是分区列,则select dt from sales_date 会单独启动作业执行子查询,而不会转化为SEMIJOIN,执行后的结果会逐个与ds比较,sales_detail中ds值不在返回结果中的分区不会读取,保证分区裁剪仍然有效。

执行的效果相当于

支持新的SELECT语序

互联网 19

互联网 20

书写顺序和执行顺序一致,就不容易混淆了。这样有一个额外的好处,在MaxCompute Studio中写SQL语句的时候,会有智能提示的功能,如果是SELECT在前,书写select列表的表达式的时候,因为FROM还没有写,MaxCompute Studio没办法知道可能访问那些列,也就不能做提示。如下

互联网 21

例如:

TAG标签: 钱柜平台登录
版权声明:本文由钱柜平台登录发布于互联网,转载请注明出处:互联网马克斯Compute重装到场比赛,ODPS重装上沙场